Determine vital status at end of follow-up depending on pat_status - tidyverse version

vital_status(
  wide_df,
  status_var = "p_status",
  life_var_new = "p_alive",
  check = TRUE,
  as_labelled_factor = FALSE
)

Arguments

wide_df

dataframe in wide format

status_var

Name of the patient status variable that was previously created. Default is p_status.

life_var_new

Name of the newly calculated variable for patient vital status. Default is p_alive.

check

Check newly calculated variable life_var_new by printing frequency table. Default is TRUE.

as_labelled_factor

If true, output life_var_new as labelled factor variable. Default is FALSE.

Value

wide_df

Examples

#load sample data
data("us_second_cancer")

#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
                    msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id", 
                    time_id_var = "SEQ_NUM", timevar_max = 10)
                    
#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
                 dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2)   ~ "No SPC",
                                                       !is.na(t_site_icd.2)   ~ "SPC developed",
                                                       TRUE ~ NA_character_)) %>%
                 dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2)   ~ 1,
                                                              TRUE ~ 0))
                                                              
#prep step - create patient status variable
usdata_wide <- usdata_wide %>%
                  msSPChelpR::pat_status(., fu_end = "2017-12-31", dattype = "seer",
                                         status_var = "p_status", life_var = "p_alive.1",
                                         birthdat_var = "datebirth.1", lifedat_var = "datedeath.1")
#> # A tibble: 11 × 3
#>    p_alive.1 p_status     n
#>    <chr>        <dbl> <int>
#>  1 Alive            1 16051
#>  2 Alive            2 17816
#>  3 Alive           97    19
#>  4 Alive           98  2523
#>  5 Dead             1  2566
#>  6 Dead             2  2086
#>  7 Dead             3 18169
#>  8 Dead             4  8676
#>  9 Dead            97     2
#> 10 Dead            98   147
#> 11 Dead            NA     5
#> # A tibble: 7 × 2
#>   p_status     n
#>      <dbl> <int>
#> 1        1 18617
#> 2        2 19902
#> 3        3 18169
#> 4        4  8676
#> 5       97    21
#> 6       98  2670
#> 7       NA     5
 
#now we can run the function
msSPChelpR::vital_status(usdata_wide, 
                        status_var = "p_status",
                        life_var_new = "p_alive_new", 
                        check = TRUE, 
                        as_labelled_factor = FALSE)
#> # A tibble: 7 × 3
#>   p_status p_alive_new     n
#>      <dbl>       <dbl> <int>
#> 1        1          10 18617
#> 2        2          10 19902
#> 3        3          11 18169
#> 4        4          11  8676
#> 5       97          97    21
#> 6       98          98  2670
#> 7       NA          NA     5
#> # A tibble: 68,060 × 131
#>    fake_id registry.1 sex.1 race.1 datebirth.1 t_datediag.1 t_site_icd.1 t_dco.1
#>    <chr>   <chr>      <chr> <chr>  <date>      <date>       <chr>        <chr>  
#>  1 100004  SEER Reg … Male  White  1926-01-01  1992-07-15   C50          histol…
#>  2 100034  SEER Reg … Male  White  1979-01-01  2000-06-15   C50          histol…
#>  3 100037  SEER Reg … Fema… White  1938-01-01  1996-01-15   C54          histol…
#>  4 100038  SEER Reg … Male  White  1989-01-01  1991-04-15   C50          histol…
#>  5 100039  SEER Reg … Fema… White  1946-01-01  2003-08-15   C50          histol…
#>  6 100047  SEER Reg … Fema… White  1927-01-01  1998-04-15   C50          histol…
#>  7 100057  SEER Reg … Male  Black  1961-01-01  2010-04-15   C18          histol…
#>  8 100060  SEER Reg … Fema… White  1947-01-01  2003-08-15   C50          histol…
#>  9 100063  SEER Reg … Fema… Black  1938-01-01  1995-12-15   C50          histol…
#> 10 100073  SEER Reg … Male  White  1960-01-01  1993-11-15   C44          histol…
#> # ℹ 68,050 more rows
#> # ℹ 123 more variables: t_hist.1 <int>, fc_age.1 <int>, datedeath.1 <date>,
#> #   p_alive.1 <chr>, p_dodmin.1 <date>, fc_agegroup.1 <chr>,
#> #   t_yeardiag.1 <chr>, registry.2 <chr>, sex.2 <chr>, race.2 <chr>,
#> #   datebirth.2 <date>, t_datediag.2 <date>, t_site_icd.2 <chr>, t_dco.2 <chr>,
#> #   t_hist.2 <int>, fc_age.2 <int>, datedeath.2 <date>, p_alive.2 <chr>,
#> #   p_dodmin.2 <date>, fc_agegroup.2 <chr>, t_yeardiag.2 <chr>, …